Exercise Sheet Solutions #10

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Let $(X, \| \bullet \|_X)$ and $(Y, \| \bullet \|_Y)$ be a normed spaces and $L: X \to Y$ a linear functional. Prove that the following are equivalent:
 - (a) L is bounded, i.e. that there is C > 0 such that for each $x \in X$, $||L(x)||_Y \le C||x||_X$,
 - **(b)** L is continuous,
 - (c) L is continuous at 0.

Solution: By linearity of L, (a) says that L is Lipschitz which implies (b). Meanwhile (b) implies (c), so it is enough to prove that (c) implies (a). In fact, as L is continuous at 0, there is r > 0 such that $L(B(0,r)) \subseteq B(0,1)$. Thus, for each $x \in X \setminus \{0\}$ we have that

$$||L(\frac{r}{2} \cdot \frac{x}{||x||})|| \le 1,$$

$$||L(x)|| \le \frac{2}{r} \cdot ||x||.$$

or equivalently $\|L(x)\| \leq \frac{2}{r} \cdot ||x||.$ As the last equality also holds for x=0, calling C=2/r>0 concludes the implication.

P2. Show that norm vector spaces are topological vector spaces.

Solution: We need to check that the addition map $\varphi: V \times V \to V$, $(u,v) \mapsto \varphi(u,v) = u+v$ is continuous, and that the product by scalar map $\psi: \mathbb{F} \times V \to V$, $(c,v) \to \psi(c,v) = c \cdot v$ is continuous. Indeed, we notice that

$$\|\varphi(u,v)\|_{V} = \|u+v\|_{V} \le \|u\|_{V} + \|v\|_{V} = \|(u,v)\|_{V\times V},$$

which implies the continuity of φ by **P1**. On the other hand,

$$\|\psi(c,v)\|_V = \|cv\|_V = |c| \cdot \|v\|$$

$$\begin{split} \|\psi(c,v)\|_{V} &= \|cv\|_{V} = |c| \cdot \|v\|. \\ \text{Now, for } (c,v) \in \mathbb{F} \times V, \text{ if } |c-c'| \leq \epsilon \text{ and } \|v-v'\| \leq \epsilon \text{ for } \epsilon > 0 \text{ then} \\ \|\psi(c,v) - \psi(c',v')\|_{V} &= \|\psi(c,v) - \psi(c',v) + \psi(c',v) - \psi(c',v')\|_{V} \\ &= \|\psi(c-c',v) + \psi(c',v'-v)\|_{V} \leq \|\psi(c-c',v)\| + \|\psi(c',v'-v)\|_{V} \\ &= |c-c'| \cdot \|v\| + |c'| \cdot \|v'-v\| \\ &\leq \epsilon \|v\| + \epsilon |c'| \\ &\leq \epsilon \|v\| + \epsilon (|c| + \epsilon), \end{split}$$

P3. Let $I \subseteq \mathbb{R}$ be an interval, $\varphi: I \to \mathbb{R}$ a convex function. If $t \in \text{Int}(I)$, then $\exists m \in \mathbb{R}$ s.t.

$$\varphi(s) \ge m(s-t) + \varphi(t), \quad \forall s \in I.$$

Solution: Let us prove first that for w < t < s we have that

$$\frac{\varphi(t) - \varphi(w)}{t - w} \le \frac{\varphi(s) - \varphi(t)}{s - t}.$$

Indeed, we notice that $\lambda = \frac{s-t}{s-w} \in (0,1)$. Thus by convexity:

$$\varphi(t) = \varphi(\lambda w + (1 - \lambda)s) \le \lambda \varphi(w) + (1 - \lambda)\varphi(s),$$

or equivalently

$$\lambda(\varphi(t) - \varphi(w)) \le (1 - \lambda)(\varphi(s) - \varphi(t)).$$

simplifying we conclude

$$\frac{\varphi(t) - \varphi(w)}{t - w} \le \frac{\varphi(s) - \varphi(t)}{s - t}.$$

Now take $s \in \text{int}(I)$. Assume without loss of generality that s > t (the other case is simpler). By convexity, we know that for each $\lambda \in (0,1)$

$$\varphi(\lambda s + (1 - \lambda)t) \le \lambda \varphi(s) + (1 - \lambda)\varphi(t)$$

Re-writing the previous inequality we get

$$\frac{\varphi(t+\lambda(s-t))-\varphi(t)}{\lambda} \le \varphi(s)-\varphi(t).$$

Define

$$m = \lim_{\lambda \to 0} \frac{\varphi(t + \lambda(s - t)) - \varphi(t)}{\lambda(s - t)}.$$

If this limit really exists, we would conclude that

$$m(s-t) + \varphi(t) \le \varphi(s).$$

We notice that the function $u \in (0, s - t) \mapsto \frac{\varphi(t + u) - \varphi(t)}{u}$ is decreasing, and bounded by

$$\frac{\varphi(t) - \varphi(w)}{t - w},$$

for any $w \in I$ with w < t. Thus, the aforemetioned limit exists and it is equal to

$$\inf \left\{ \frac{\varphi(t + \lambda(s - t)) - \varphi(t)}{\lambda(s - t)} \mid \lambda \in (0, 1) \right\},\,$$

concluding

P4. Let $p, q \in (1, \infty)$ conjugate exponents and $f \in L^p$. Show that

$$||f||_p = \sup_{||g||_q \le 1} \left| \int fg d\mu \right|.$$

Solution: We prove the equality by doble inequality. First, we take $q \in L^q$ with $||g||_q \le 1$. By Holder's inequality

$$\left| \int fg d\mu \right| \le \int |fg| \, d\mu \le ||f||_p ||g||_q \le ||f||_p.$$

Taking supremum we conclude

$$||f||_p \ge \sup_{||g||_q \le 1} \left| \int fg d\mu \right|.$$

For the other direction, define

$$g(x) = \begin{cases} \frac{1}{||f||_p^{p/q}} |f|^{p-2}(x) \cdot \overline{f}(x) & \text{if } f(x) \neq 0 \\ 0 & \text{else} \end{cases}.$$

We prove that $g \in L^q$. Indeed, we observe that as 1/p + 1/q = 1 we have q(p-1) = p. This

$$\int |g|^q d\mu = \frac{1}{||f||_p^p} \int |f|^{(p-1)q} d\mu = \frac{1}{||f||_p^p} \int |f|^p d\mu = ||f||_p^{p-p} = 1,$$

implies
$$\int |g|^q d\mu = \frac{1}{||f||_p^p} \int |f|^{(p-1)q} d\mu = \frac{1}{||f||_p^p} \int |f|^p d\mu = ||f||_p^{p-p} = 1,$$
 So, we get that $g \in L^q$ and $||g||_q = 1$. Thus, we have
$$\sup_{\|g'\|_q \le 1} \left| \int fg' d\mu \right| \ge \left| \int fg d\mu \right| = \frac{1}{||f||_p^{p/q}} \int |f|^p d\mu = ||f||_p^{p-p/q} = ||f||_p,$$

concluding the second inequality and hence the equality.