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P1. Let (X, ∥ • ∥X) and (Y, ∥ • ∥Y ) be a normed spaces and L : X → Y a linear functional. Prove
that the following are equivalent:

(a) L is bounded, i.e. that there is C > 0 such that for each x ∈ X, ∥L(x)∥Y ≤ C∥x∥X ,

(b) L is continuous,

(c) L is continuous at 0.

Solution: By linearity of L, (a) says that L is Lipschitz which implies (b). Meanwhile (b)
implies (c), so it is enough to prove that (c) implies (a). In fact, as L is continuous at 0, there
is r > 0 such that L(B(0, r)) ⊆ B(0, 1). Thus, for each x ∈ X \ {0} we have that

∥L(r
2
· x

||x||
)∥ ≤ 1,

or equivalently

∥L(x)∥ ≤ 2

r
· ||x||.

As the last equality also holds for x = 0, calling C = 2/r > 0 concludes the implication.

P2. Show that norm vector spaces are topological vector spaces.

Solution: We need to check that the addition map φ : V × V → V , (u, v) 7→ φ(u, v) = u+ v
is continuous, and that the product by scalar map ψ : F × V → V , (c, v) → ψ(c, v) = c · v is
continuous. Indeed, we notice that

∥φ(u, v)∥V = ∥u+ v∥V ≤ ∥u∥V + ∥v∥V = ∥(u, v)∥V×V ,

which implies the continuity of φ by P1. On the other hand,

∥ψ(c, v)∥V = ∥cv∥V = |c| · ∥v∥.

Now, for (c, v) ∈ F× V , if |c− c′| ≤ ϵ and ∥v − v′∥ ≤ ϵ for ϵ > 0 then

∥ψ(c, v)− ψ(c′, v′)∥V = ∥ψ(c, v)− ψ(c′, v) + ψ(c′, v)− ψ(c′, v′)∥V
= ∥ψ(c− c′, v) + ψ(c′, v′ − v)∥V ≤ ∥ψ(c− c′, v)∥+ ∥ψ(c′, v′ − v)∥V
= |c− c′| · ∥v∥+ |c′| · ∥v′ − v∥
≤ ϵ||v||+ ϵ|c′|
≤ ϵ||v||+ ϵ(|c|+ ϵ),

which shows the continuity of ψ as well, concluding.

P3. Let I ⊆ R be an interval, φ : I → R a convex function. If t ∈ Int(I), then ∃m ∈ R s.t.

φ(s) ≥ m(s− t) + φ(t), ∀s ∈ I.



Solution: Let us prove first that for w < t < s we have that

φ(t)− φ(w)

t− w
≤ φ(s)− φ(t)

s− t
.

Indeed, we notice that λ = s−t
s−w ∈ (0, 1). Thus by convexity:

φ(t) = φ(λw + (1− λ)s) ≤ λφ(w) + (1− λ)φ(s),

or equivalently
λ(φ(t)− φ(w)) ≤ (1− λ)(φ(s)− φ(t)).

simplifying we conclude
φ(t)− φ(w)

t− w
≤ φ(s)− φ(t)

s− t
.

Now take s ∈ int(I). Assume without loss of generality that s > t (the other case is simpler).
By convexity, we know that for each λ ∈ (0, 1)

φ(λs+ (1− λ)t) ≤ λφ(s) + (1− λ)φ(t).

Re-writing the previous inequality we get

φ(t+ λ(s− t))− φ(t)

λ
≤ φ(s)− φ(t).

Define

m = ĺım
λ→0

φ(t+ λ(s− t))− φ(t)

λ(s− t)
.

If this limit really exists, we would conclude that

m(s− t) + φ(t) ≤ φ(s).

We notice that the function u ∈ (0, s− t) 7→ φ(t+u)−φ(t)
u is decreasing, and bounded by

φ(t)− φ(w)

t− w
,

for any w ∈ I with w < t. Thus, the aforemetioned limit exists and it is equal to

inf

{
φ(t+ λ(s− t))− φ(t)

λ(s− t)
| λ ∈ (0, 1)

}
,

concluding.

P4. Let p, q ∈ (1,∞) conjugate exponents and f ∈ Lp. Show that

∥f∥p = sup
∥g∥q≤1

∣∣∣∣∫ fgdµ

∣∣∣∣ .
Solution: We prove the equality by doble inequality. First, we take q ∈ Lq with ||g||q ≤ 1. By
Holder’s inequality ∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ∫
|fg| dµ ≤ ||f ||p||g||q ≤ ||f ||p.
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Taking supremum we conclude

∥f∥p ≥ sup
∥g∥q≤1

∣∣∣∣∫ fgdµ

∣∣∣∣ .
For the other direction, define

g(x) =


1

||f ||p/qp

|f |p−2(x) · f(x) if f(x) ̸= 0

0 else
.

We prove that g ∈ Lq. Indeed, we observe that as 1/p + 1/q = 1 we have q(p − 1) = p. This
implies ∫

|g|qdµ =
1

||f ||pp

∫
|f |(p−1)qdµ =

1

||f ||pp

∫
|f |pdµ = ||f ||p−p

p = 1,

So, we get that g ∈ Lq and ||g||q = 1. Thus, we have

sup
∥g′∥q≤1

∣∣∣∣∫ fg′dµ

∣∣∣∣ ≥ ∣∣∣∣∫ fgdµ

∣∣∣∣ = 1

||f ||p/qp

∫
|f |pdµ = ||f ||p−p/q

p = ||f ||p,

concluding the second inequality and hence the equality.
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